黑龙江省哈九中2024届高三最后一卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数(其中,图象的一个对称中心为,,其相邻一条对称轴方程为,该对称轴处所对应的函数值为,为了得到的图象,则只要将的图象()A.向右平移个单位长度B.向左平移个单位长度C.向左平移个单位长度D.向右平移个单位长度2.已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为()D.A.B.C.3.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()D.A.B.3C.24.如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与直线相交的平面个数分别记为,则下列结论正确的是()A.B.C.D.5.若数列为等差数列,且满足,为数列的前项和,则()A.B.C.D.6.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①直线与直线的斜率乘积为;②轴;③以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是()A.①②③B.①②C.①③D.②③7.已知椭圆内有一条以点为中点的弦,则直线的方程为()A.B.C.D.8.羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从名男生,,和名女生,,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为()A.B.C.D.9.设,则A.B.C.D.10.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为()A.B.C.D.11.使得的展开式中含有常数项的最小的n为()A.B.C.D.12.点为的三条中线的交点,且,,则的值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数(为虚数单位),则的共轭复数是_____,_____.14.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.15.某市高三理科学生有名,在一次调研测试中,数学成绩服从正态分布,已知,若按成绩分层抽样的方式取份试卷进行分析,则应从分以上的试卷中抽取的份数为__________.16.如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.18.(12分)已知,,且.(1)求的最小值;(2)证明:.19.(12分)已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求的取值范围;(2)若函数在区间上恰有3个零点,且,求的取值范围.20.(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.与圆交于,(1)求B;(2)若,,且,求BD的长度.21.(12分)选修4-5:不等式选讲已知函数的最大值为3,其中.(1)求的值;(2)若,,,求证:22.(10分)已知点为椭圆上任意一点,直线两点,点为椭圆的左焦点.(1)求证:直线与椭圆相切;(2)判断是否为定值,并说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,可得的解...