黑龙江省哈尔滨八中2024届高三第三次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,且、都是全集(为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为()A.B.或C.D.2.已知,函数,若函数恰有三个零点,则()A.B.C.D.3.已知复数z满足(其中i为虚数单位),则复数z的虚部是()A.B.1C.D.i4.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A.B.C.D.5.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是()A.B.C.D.6.在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为()A.B.C.D.表示的平面区域分别是和,若在7.记集合和集合D.区域内任取一点,则该点落在区域的概率为()A.B.C.8.已知集合,则等于()A.B.C.D.9.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为()A.B.C.D.10.下列判断错误的是()A.若随机变量服从正态分布,则”是“B.已知直线平面,直线平面,则“”的充分不必要条件C.若随机变量服从二项分布:,则D.是的充分不必要条件11.已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是()A.B.C.D.12.如图是计算值的一个程序框图,其中判断框内应填入的条件是()A.中,平面,B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为__________.14.曲线在点处的切线方程是__________.15.若函数满足:①是偶函数;②的图象关于点对称.则同时满足①②的,的一组值可以分别是__________.16.已知中,点是边的中点,的面积为,则线段的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,为的导数,函数在处取得最小值.(1)求证:;(2)若时,恒成立,求的取值范围.18.(12分)已知函数.(Ⅰ)求在点处的切线方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有两个实数根,且,证明:.19.(12分)如图,直线与抛物线交于两点,直线与轴交于点,且直线恰好平分.(1)求的值;(2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.20.(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.21.(12分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点的直角坐标.22.(10分)在中,、、的对应边分别为、、,已知,,.(1)求;中点,求的长.(2)设为参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据韦恩图可确定所表示集合为,根据一元二次不等式解法和定义域的求法可求得集合,根据补集和交集定义可求得结果.【详解】由韦恩图可知:阴影部分表示,,,.故选:.【点睛】本题考查集合运算中的补集和交集运算,涉及到一元二次不等式和函数定义域的求解;关键是能够根据韦恩图确定所求集合.2、C【解析】当时,最多一个零点;当时,,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当时,,得;最多一个零点;当时,,...