黑龙江省大庆铁人中学2024年高三第二次诊断性检测数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种B.144种C.288种D.360种2.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A.B.C.D.3.函数的部分图象如图所示,则的单调递增区间为()A.B.C.D.4.已知,则下列不等式正确的是()A.C.B.D.5.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是()A.B.C.D.以上情况均有可能6.设P={yy=-x2+1,x∈R},Q={yy=2x,x∈R},则A.PQB.QPC.QD.Q7.函数的定义域为()A.或B.或C.D.8.年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A.B.C.D.9.已知数列满足,(),则数列的通项公式()A.B.C.D.10.若,则下列不等式不能成立的是()A.B.C.D.11.已知非零向量,满足,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:12.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是()A.12B.16C.20D.8二、填空题:本题共4小题,每小题5分,共20分。13.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),则⋅_____,△ABC的面积为_____.14.学校艺术节对同一类的,,,四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:乙说:“作品获得一等奖”;甲说:“或作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“作品获得一等奖”.若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______.15.设f(x)=etx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.16.已知函数为奇函数,,且与图象的交点为,,…,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,平面分别是上的动点,且.(1)若平面与平面的交线为,求证:;(2)当平面平面时,求平面与平面所成的二面角的余弦值.18.(12分)“绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习.甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.(1)设事件为“选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;的分布列和期望(2)用表示抽取的人中乙组女生的人数,求随机变量19.(12分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.20.(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.21.(12分)已知函数,.(1)若不等式...