黑龙江省黑河市逊克县一中2024届高三3月份模拟考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A.B.C.D.2.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有()A.8种B.12种C.16种D.20种3.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高;③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差.以上说法正确的是()A.③④B.①②C.②④D.①③④,则=()4.集合,A.B.C.D.5.已知等比数列的各项均为正数,设其前n项和,若(),则()A.30B.C.D.626.设,均为非零的平面向量,则“存在负数,使得”是“”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件7.已知集合,则()A.B.C.D.8.曲线在点处的切线方程为,则()A.B.C.4D.89.已知集合,B={y∈Ny=x﹣1,x∈A},则A∪B=()A.{﹣1,0,1,2,3}B.{﹣1,0,1,2}C.{0,1,2}D.{x﹣1≤x≤2}10.已知函数,若曲线在点处的切线方程为,则实数的取值为()A.-2B.-1C.1D.211.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是()A.B.C.D.12.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是()A.各月最高气温平均值与最低气温平均值总体呈正相关B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10°C的月份有5个D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势二、填空题:本题共4小题,每小题5分,共20分。13.数列满足递推公式,且,则___________.14.已知向量满足,,则______________.15.已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数__________.16.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)过点P(-4,0)的动直线l与抛物线相交于D、E两点,已知当l的斜率为时,.(1)求抛物线C的方程;(2)设的中垂线在轴上的截距为,求的取值范围.18.(12分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.19.(12分)已知函数.(1)讨论的单调性;,证明:,,使(2)若,设.中,,,D,E分别为AB,BC的中20.(12分)如图,在直三棱柱点.(1)证明:平面平面;(2)求点到平面的距离.21.(12分)如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.(1)若,求直线AP与平面所成角;(2)在线段上是否存在一个定点Q,使得对任意的实数m,都有,并证明你的结论.22.(10分)已知,且.(1)请给出的一组值,使得成立;(2)证明不等式恒成立.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意可得面,可知,因为,...